Extensions 1→N→G→Q→1 with N=C32xSD16 and Q=C2

Direct product G=NxQ with N=C32xSD16 and Q=C2
dρLabelID
SD16xC3xC6144SD16xC3xC6288,830

Semidirect products G=N:Q with N=C32xSD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32xSD16):1C2 = C3xQ8:3D6φ: C2/C1C2 ⊆ Out C32xSD16484(C3^2xSD16):1C2288,685
(C32xSD16):2C2 = C3xD4.D6φ: C2/C1C2 ⊆ Out C32xSD16484(C3^2xSD16):2C2288,686
(C32xSD16):3C2 = C24:7D6φ: C2/C1C2 ⊆ Out C32xSD1672(C3^2xSD16):3C2288,771
(C32xSD16):4C2 = C24.32D6φ: C2/C1C2 ⊆ Out C32xSD16144(C3^2xSD16):4C2288,772
(C32xSD16):5C2 = C3xS3xSD16φ: C2/C1C2 ⊆ Out C32xSD16484(C3^2xSD16):5C2288,684
(C32xSD16):6C2 = C3xQ8.7D6φ: C2/C1C2 ⊆ Out C32xSD16484(C3^2xSD16):6C2288,687
(C32xSD16):7C2 = SD16xC3:S3φ: C2/C1C2 ⊆ Out C32xSD1672(C3^2xSD16):7C2288,770
(C32xSD16):8C2 = C24.40D6φ: C2/C1C2 ⊆ Out C32xSD16144(C3^2xSD16):8C2288,773
(C32xSD16):9C2 = C32xC8:C22φ: C2/C1C2 ⊆ Out C32xSD1672(C3^2xSD16):9C2288,833
(C32xSD16):10C2 = C32xC8.C22φ: C2/C1C2 ⊆ Out C32xSD16144(C3^2xSD16):10C2288,834
(C32xSD16):11C2 = C32xC4oD8φ: trivial image144(C3^2xSD16):11C2288,832


׿
x
:
Z
F
o
wr
Q
<